

Centro de Investigação em Matemática e Aplicações Departamento de Matemática

Seminário

Segunda-feira, 23 de julho de 2012 CLAV, sala 126 às 14:30 horas

Dimensional reduction for $-\Delta_1^{-1}$

Elvira Zappale Università degli Studi Di Salerno Colaboradora do CIMA, UÉvora

¹joint work with Maria Emilia Amendola and Giuliano Gargiulo

Resumo

It is studied the 3D-2D dimensional reduction for $-\Delta_1$ and a power-law approximation is also provided in terms on $-\Delta_p$ as $p \to 1$.

We study the asymptotic behaviour, both for $\varepsilon \to 0$ and $p \to 1$ of p-harmonic functions in thin domains of the type $\Omega_\varepsilon: \omega \times \left(-\frac{\varepsilon}{2}, \frac{\varepsilon}{2}\right)$, with prescribed boundary data u_0 on the lateral boundary of $\Omega_\varepsilon:=\partial\omega\times\left(-\frac{\varepsilon}{2},\frac{\varepsilon}{2}\right)$, i.e.

$$\begin{cases}
-\Delta_{p}v := -\operatorname{div}(|\nabla v|^{p-2}\nabla v) = 0 & \text{in } \Omega_{\varepsilon}, \\
v \equiv v_{0} & \text{on } \partial\omega \times \left(-\frac{\varepsilon}{2}, \frac{\varepsilon}{2}\right), \\
|\nabla v|^{p-2}\nabla v \cdot \nu = 0 & \text{on } \omega \times \left\{-\frac{\varepsilon}{2}, \frac{\varepsilon}{2}\right\}.
\end{cases}$$
(1)

Equivalently one may think of studying as $\varepsilon \to 0$ and $p \to 1$, the associated Dirichlet integral, namely

$$\frac{1}{\varepsilon} \int_{\Omega_{\varepsilon}} |\nabla v|^p dx \tag{2}$$

among all the fields $v \in W^{1,p}(\Omega_{\varepsilon})$, with $v \equiv v_0$ on $\partial \omega \times \left(-\frac{\varepsilon}{2}, \frac{\varepsilon}{2}\right)$.