

Centro de Investigação em Matemática e Aplicações Departamento de Matemática

Seminário

30 de Novembro de 2011, Quarta-feira CLAV – 138 - 16:00 horas

Boundary layer problem: Navier-Stokes equations and Euler equations

Nikolai V. Chemetov

CMAF/Universidade de Lisboa

Resumo

We consider the Navier-Stokes equations in a bounded domain $\Omega \subseteq \mathbf{R}^2$

$$\begin{aligned} \mathbf{v}_t + \operatorname{div} \left(\mathbf{v} \otimes \mathbf{v} \right) - \bigtriangledown p &= \mu \bigtriangleup \mathbf{v}, & \mathbf{x} \in \Omega, \quad t > 0, \\ \operatorname{div} \mathbf{v} &= 0, \\ \mathbf{v}(\mathbf{x}, 0) &= \mathbf{v}_0(\mathbf{x}), & \mathbf{x} \in \Omega, \end{aligned}$$

admitting flows through the boundary $\partial \Omega$ of Ω

$$\begin{split} \mathbf{v}\cdot\mathbf{n} &= a(\mathbf{x},t), \qquad \mathbf{x}\in\partial\Omega, \quad t>0,\\ 2D(\mathbf{v})\mathbf{n}\cdot\mathbf{s}+\alpha(\mathbf{x},t)\;\mathbf{v}\cdot\mathbf{s} &= b(\mathbf{x},t). \end{split}$$

The last one are so-called Navier slip boundary conditions. Here $\mathbf{v}(\mathbf{x},t)$ - the velocity of the

fluid; $p(\mathbf{x},t)$ - the pressure; $D(\mathbf{v}) := \frac{1}{2} [\nabla \mathbf{v} + (\nabla \mathbf{v})^T]$ - the rate-of-strain tensor of \mathbf{v} ; (n,s) - the pair formed by the outside normal and tangent vectors to the boundary Γ of Ω .

The main result: When $\mu \to 0$ we shown that the solutions \mathbf{v}_{μ} of the Navier - Stokes equations converge to the solution \mathbf{v} of the Euler equations, satisfying the Navier slip boundary conditions on the part of the boundary $\partial \Omega$, where $\mathbf{v} \cdot \mathbf{n} = a < 0$, such that

$$\mathbf{v}_{\mu} \to \mathbf{v} \qquad strongly \ in \qquad L_{\infty}(0,T;W_{p}^{1}(\Omega)).$$
 (1)

This result solved a so-called problem of boundary layers.

References

Chemetov N.V., Cipriano F., "Boundary layer problem: Navier-Stokes equations and Euler equations", submitted.